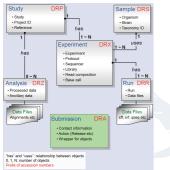
Database Center for Life Science (DBCLS) Research Organization of Information and Systems (ROIS)

Functional indexing and curation of next-generation sequencing data

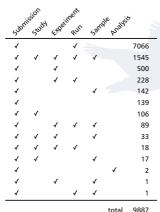
Takeru Nakazato*, Hidemasa Bono, Toshihisa Takagi

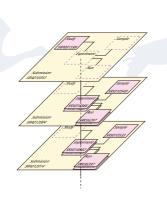

ium jun

Database Center for Life Science (DBCLS), Research Organization of Information and Systems (ROIS) *: nakazato@dbcls.rois.ac.jp

Backgrounds and motivations

The data structure of SRA




The next-generation sequencing data is archived in short read archive (SRA) in NCBI, EBI, and DDBJ as well as nucleotide sequences in GenBank and gene expression data in GEO.

The doposited NGS data contains not only short read sequences but also conditions of experiments including project title, species or cell line names of samples, and sequencing platforms as a meta data. The meta data consists of six files with XML format: submission, study, experiment, run, sample and analysis.

However, each submission has not all of those meta data because additional experiments or runs to be assigned to a previous project are often performed and reposited as a new submission

Original content on http://trace.ddbj.nig.ac.jp/dra/documentation e.shtml

total

Methods

<pre><?xml version="1.0" encoding="UTF-8"?> <experiment_set xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> <experiment accession="SRX003641" alias="4NG_TG-P3_044sA-FLX"> <experiment accession="SRX003641"> <experiment accession="SRX003641"> <experiment accession="SRX003641"> <experiment accession="SRX003641"> <experiment accession="SRX003641"> <experiment accession="SRX003641"> <experiment accession="SRX00370"> </experiment> </experiment> </experiment> </experiment> </experiment> </experiment> </experiment></experiment></experiment></experiment></experiment></experiment></experiment></experiment></experiment></experiment></experiment></experiment></experiment></experiment></experiment></experiment></experiment></experiment></experiment></experiment></experiment></experiment></experiment></experiment></experiment></experiment></experiment></experiment></experiment></experiment></experiment></experiment></experiment></experiment_set></pre>		
<pre> <flow_count>100</flow_count></pre>		

We made connections among each type of corresponding matadata by extracting accession numbers assigned as a reference from XML files. We also obtained informations of experiments such as titles and platforms from each XML files.

to a traditional and and and are

Results and Discussions

Statistics

Study Types	
Whole Genome Sequencing	1366
Transcriptome Analysis	463
Metagenomics	390
Epigenetics	198
Other	110
Resequencing	70
Gene Regulation Study	19
Population Genomics	17
RNASeq	12
Cancer Genomics	10
Forensic or Paleo-genomics	2
Synthetic Genomics	1
Total	2658

Pla	atforms	
Illu	mina Genome Analyzer II	11727
	454 GS FLX	4321
11	lumina Genome Analyzer	3058
Sol	exa 1G Genome Analyzer	1481
	454 Titanium	1314
	unspecified	923
	GS FLX	822
	AB SOLiD System 3.0	187
	GS 20	164
	AB SOLID System 2.0	158
	454 GS 20	98
	AB SOLiD System	76
	Helicos HeliScope	14
	454 GS	9
	Total	24352

Species of samples (top 12)

Human Metagenome	76656
Homo sapiens	2380
Human	1051
Mus musculus	757
Drosophila melanogaster	609
Plasmodium falciparum	591
human metagenome	400
Oryza sativa Indica Group	240
human skin metagenome	178
Metagenomic	160
Caenorhabditis elegans	150
Arabidopsis thaliana	137
Total	93157

Data visualization

Aメタデータ解析 Stuc	+ 9921			
Suracipline Analysis	Properties Personancing Perparties Papabelies Muldare Concer	anat anonco Dantas	Vitela General Incuencing	***
112121410.010		_		
1 SHADDESCE SHIPPEDDEFF THE C	ancer Demons Alba Project at SCINHON	Cancer Denomical	2878 2414	2008-00
2 54400000 54900000 10000	ieroma Projez Plot 3	Remaining	1003 1106	2009-12-0
	anoma Project Plot 1	Mule Denime Semanoine	229, 8947	2008-00-0
* STAROOCCE STREETCE* CO* 5	wrate of the Japanese individuals	Multe Dancine Bequencing	581 821	2008-13-0 1346-0
5-574005525-574901131 C-644	ion of Antibiotic Resistance - E. coli	Miche Derione Beguerning	80,80	214810
6-574006522-57498 XX4-9444	percent sequencing of Sectoromous aculation (Physiogine sticklebeck)	Miche Denome Sequencing	245 245	010430
T \$744000055-574000002 10000	Jamamus Project Pilot 2	Mhole Genome Sequencing	200 3240	144100
8-STABOROOF STPEROSAL Case a	nverage of the Yoraka individuals	Mhole Genome Sequencing	204 274	193600
9 9940000 F9 99900000 Cam a	overage of the Hapitapi Milkar ancestry indeduats from 2H US	Mhole Genome Sequencing	194, 190	2009-13-2
C 994008008 99900 730 9486	stip Minde Denome Dequencing	Mhole Genome Sequencing	100, 100	2009-09-1
11 STARDOROM SHPRODADCAH S		Nhole Genome Gepuencing	187 1213	2005134
CERTS	NBO Understanling machanisms underlying human gama supression variation with 10-0 ming	And pile	181, 181	2009-12-1 14.45.56
Selected a series to the owner	gmentel Fire Dourse polysitiv IIIVA Profiling in D. meterogenar	Sanurations Analysis	141 242	2009-08-0
14 STARDOOCH SHPROOS47 LDH D	overage of the CEPH individuals	Mule Denone Executive	132 291	2008-12-0 1246-0
15-0148800102-01498800010-440 T	n.s-	Miche Danome Breumsing	151 561	2009-09-1 1049-01
87			11	

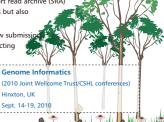
jump to thecorresponding runs list

We developed an index site of NGS data as	
yellow pages to make NGS data more	
searchable and re-usable.	
This service shows a project list, and	
corresponding lists of experiments and runs by	
clicking the numbers of assigned experiments	
and runs. Researchers can also restrict the	
study entries by types of the interests such as	
transcriptome analysis or whole genome	
sequencing.	

This web service is freely available on http://mars.dbcls.jp/sra/.

The information described in meta data contains errors and spelling variation such as "Homo sapiens" and "human" because the information was originally written by researchers who provided corresponding short read sequences. We will curate extracted informations by correcting these misspellings and disambiguate spelling variations.

Conclusions


- The next-generation sequencing (NGS) data is archived in short read archive (SRA) and the archived data contains not only short read sequences but also the conditions of experiments as a meta data.

- Additional experiments and runs are often deposited as a new subr We therefore made connections among submissions by extracting accession numbers as a reference from XML files

- We developed an index site of NGS data as yellow pages and the service is available on http://mars.dbcls.jp/sra/.

Copyright© 2010 Takeru Nakazato (DBCLS <u>c</u> ()

